If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2+56p-12=0
a = 9; b = 56; c = -12;
Δ = b2-4ac
Δ = 562-4·9·(-12)
Δ = 3568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3568}=\sqrt{16*223}=\sqrt{16}*\sqrt{223}=4\sqrt{223}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{223}}{2*9}=\frac{-56-4\sqrt{223}}{18} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{223}}{2*9}=\frac{-56+4\sqrt{223}}{18} $
| 6(4x-4)=120 | | 12x+5=4x+14 | | 25x+5=2x+16 | | -=5y+3 | | (4x+10)=(x+5) | | 3x+6=8x+2 | | 25x+5=2x+6 | | -4+8(7x-6)=116 | | 5x+4=8x+9 | | 11/2x-9=5+4x | | 1.5d+7.25=2+3.25 | | 18x^2+10x-3=0 | | -2(7v-3)v=126 | | 8x-14=6x-34 | | 3x-6=-20-4x | | -26=-6(2x-14) | | -9x+15=-22-4(x=12) | | (2x-3)^2-x(4x^2+3)-9=0 | | 2(x+8)^2=24 | | 60t−120=300. | | 3(y-7)-7=-5(-5y+8)-8y | | -86=-2(5n+3) | | 6.1x=86.6 | | (2x-1)=(2x-1) | | -86=-2(5n+3 | | 2.5+6.1x=89.1 | | 8(u-9)=-2u-32 | | y+-7=11 | | x+@+2x=x+12 | | 2.5+7.1x-x=x-x+89.1 | | x(x+5)=x^2-45 | | 2.8-x+15=1.5 |